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ABSTRACT

In this report, a class of bandwidth efficient block codes for M-ary PSK
modulation is presented. A soft-decision decoding for this class of codes is
devised. Some specific short codes for QPSK, 8-PSK and 16-PSK modulations
are constructed. These codes have good minimum squared Euclidean
distances and provide 2 to 5.8 dB coding gains over uncoded QPSK modulation
without (or with little) bandwidth expansion. The complete weight
distributions of these specific codes are determined. Based on these weight
distributions, their error probabilities are evaluated. Some of these codes have
simple trellis structures and hence can be decoded by Viterbi decoding
algorithm with relatively simple implementation. Moreover the codes are very
suitable for use as inner codes for various cascaded coding schemes with Reed-

Solomon codes as outer codes.




Bandwidth Efficient Block Codes
for M-ary PSK Modulation

L Introduction

Recently a great deal of research effort has been expended in bandwidth
efficient coded modulations for achieving reliable communications on band-
limited channels [1-27]. This new technique of coded modulation is achieved by
coding onto an expanded set of channel signals (relative to that needed for
uncoded transmission). Coded modulation can provide significant coding gain
over an uncoded system with little or no bandwidth expansion. Most of the
research works on coded modulation has been focused on trellis coded
modulations (TCM), i.e., trellis (convolutional) coding with expanded signal
sets. Not much has been dore on block coded modulations.

In this report, we investigate block coding for M-ary PSK modulation.
First we present a generalization of coset codes over binary lattices [20] to codes
over additive groups. From this generalization, a method for constructing
block coded M-ary PSK codes is devised. Then a soft-decision decoding
algorithm for these M-ary codes is provided. Some specific QPSK, 8-PSK and
16-PSK codes with good minimum squared Euclidean distances and trellis
structure are constructed. These codes provide 2 to 5.8 dB coding gains over
uncoded QPSK modulation. Complete weight distributions of these codes are
derived. Based on these weight distributions, we are able to analyze the error
performance of these codes for an AWGN channel. Upper bounds on the error
probabilities are obtained. Since these codes have simple trellis structure, they
can be decoded with Viterbi decoding.

In our next report, we will investigate various cascaded coding schemes

with bandwidth efficient M-ary PSK codes constructed in this report as the



inner code. Preliminary results show that large coding gains can be achieved
over the uncoded QPSK modulation.

Let A be an additive group (finite or infinite) on which a distance
between two elements s and s', denoted d(s,s"), is defined. The distance

measure, d(é, g"), satisfies the following conditions:
1. d(s,s") = d(s-8',0), 21)
where 0 denotes the zero element in A, and

2. d(s,s) =0 ifandonlyif s =5 (2.2)

Let By, Bg, -+, By be & nonempty finite subsets of A for which the
following unique decomposition property holds : for s; and s;' in B;,

8] +Sg9 + - +8g = 8] +8) + - + Sg, (2.3)
if and only if 8; = ;' for 1 i< 8. Let S be defined as

S%Bl +Bg +- + By
={8] +8g+ +8g:8;€ Bj with 1<i<®}. (24)

'Clearly S is a subset of A.
For a nonempty finite subset B of A, let d[B] denote the minimum

distance between elements of B. If B has only one element, let d[B] be defined
as oo, For1l <i<2,let d; be defined as follows:
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d; = d(B; + B;,; + - + Bgl. (2.5)

For a positive integer n, let AR denote the set of all n-tuples over A. Define the
distance between two n-tuples 8 = (s1, 89, , 85) and g = (81,89, -+, 8p) over

A, denoted d(8)(3,5", as

n
d0)s,8) = Y, d(s;.g). 2.6)
=1

The sum of two n-tuples over A is defined as the component-wise sum of the
two n-tuples. For 1 <i< 2, let C; be a block code of length n over B; with

minimum Hamming distance ;. From Cy, Cg, - ,Cg, a block code C of

length n over S is constructed as follows:

C={vy+vg+ - + vg:v;e Cifor 1siss}). @.7)

We will use the following expression for C,

C=Cy +Cg+-+Cy.
Let 1X! denote the number of elements in a finite set X. Then
2

IClI =T IC;t. (2.8)
i=1

Lemma 1 provides a lower bound on the minimum distance of the block code C.
Lemma 1: The minimum distance of C with respect to d(%), denoted D[C], is

lower-bounded as follows:



DIC]2 Min &4 2.9)
1<iss

Proof: For different v and v'in C, let v and v' be expressed as

\-r=\—'1 +;72+ s \-72, :lie Ci’

(2.10)
V=vi4vh + o+ Vi, vie Gy
where
vi = (81, 8i2, > 8in) » 8jj € By,
(2.11)
vi=(sj1,82, " 8in)» §j€ By,
with1 <i<2 and1 <j <n. Let h denote the first suffix such that
v # VY, (212)

Then, since the minimum Hamming distance of Cy, is 3y, there exist 8y

suffices 1 <j; <jg << jSh < n such that

. > ) 2.1
shjp¢shjp’ for1<ps<d (2.13)

Sincesij =5'ij for1 <i<handl <j<n, we have that, for1 <p <oy,

2 2 h-1
d(Vs.,¥s.)2dl Y 8. +By +Bp,1+ +Bgl (2.14)
i§1 Yp i:‘:1 Yp i§1 p TR T TR



It follows from (2.1), (2.5) and (2.14) that, for1 <p <3y

) 2
(Y s Y8 )2dy. (2.15)
i=1 Jpiq Yp
(a)- - n 2 2
. )y
Since d\)(v,v' ) = 2 d(.z sij’,z dij), we have that
=1 i=1 "i=1
d0)v,v' )2 8,dy, > Min 8d;. (2.16)
1<i<%
.

In this section, we consider code construction for M-ary PSK modulation
where
M=2%, (3.1)
Let
A={01,2, -, M1} 3.2)
be the integer group under the modulo-M addition. Define a distance between

two elements s and s8' in A as follows:
d(s,s") = 4sin2(2"%*n(s-s") . (3.3)

It is clear that d(s,8") = d(s-8',0) and d(s,8) = 0. For 1 <152, let

B;={0, gi-1y, (3.4)



Then, By, By, -+, Bg have the unique decomposition property which is related

to standard binary representation of an nonnegative integer. Note that

A =Bj +Bg + - + By. (3.5)

Then, it follows from (2.5), (3.3) and (3.4) that

d; = 4sin2(2i"1-%), for1<i<s. (3.6)

Since IB;l=2 for 1 <i< 8, a block code over B; with minimum Hamming
distance 3; can be derived from a binary block code Cy, of the same code length
with the same minimum Hamming distance §; by substituting 2i-1 for 1 in
each component of a codeword in Cy. The code over B; will be denoted by
gi-1 Cy,.

Suppose that Cp; is a binary linear (nkj};) code with minimum
Hamming distance §; for 1 <i< 2. Let C denote the sum code, Cpj + 2Cho +
-4 2% ‘ICb g- Cis linear code over A. Cy; is called a binary component code

of C. It follows from (2.8) that

2

ki |
Cleoit B a7

Let s and s' be two n-tuples over the group A. It follows from the definition of
d(®)s,8") given by (2.6) and the definition of d(s,s') given by (3.3) that d(n)s,s) is
simply a squared Fuclidean distance between the two n-tuples s and §' over A.

.The minimum squared Euclidean distance (MSED) of code C is then given by

D[C} & min{d®)(v,v) :v,veCand v#V ]} . (3.8)



It follows from Lemma 1, (2.9), (3.6) and (3.8) that

DIC]2 Min 4 sin2(2i"1-%x) 3.9)
1<i<®

If each component of a code vector v in C is mapped into a point in the 2-
dimensional 2%-PSK signal set, we obtain a block coded 2% PSK code. The
effective rate of this code is given by

1 &
RIC) = g7 Tk (310)

which is the number of information bits transmitted by C per dimension. Let
Cg denote a standard reference code. The asymptotic code gain of C, denoted

Y{C], over the reference code is given by [8,20]

RICIDIC]

1{C] =10log; , RIC,IDIC] - (3.11)

If the uncoded QPSK is used as the reference code Cg, then R{Cg] =1, D[Cg]l = 2

and

The asymptotic coding gain is used as a simple measure of the performance of
a code. To analyze the performance of a code in details, we need to know the
’complete weight distribution of C.

Let v = (v1, v9, =+, V) be an n-tuple over the group A. The composition

of v, denoted comp(!}), is a M-tuple



t=(tg, ty, - » tp-1)

where t; is the number of components v in v equal to the integer i in A. Let

W(t) be the number of codewords v in C with comp(v) =t. Let T be the set
T={tg t1,~,tM-1):0Stjsnwith0<i<M]}. (3.13)
Then
(Wt):te T} (3.14)

is the detail weight distribution of C. Once this weight distribution is known,
the error performance of C can be analyzed and computed.

W(t) can be enumerated from the joint weight distribution [28] of the
binary component codes, Cpy, Cp9, - ,Cpg- For a binary 2-tuple h= (hy, hy,
~,hg)e (0,1} and binary vectors ‘-’i = (Vj1, Vi2, = » Vijp) With1 i< 2, let

comp( h;vy, vy, - ,vg) (3.15)

denote the number of j's such that vj; = h; for1 i< 2. For nonnegative

integers tg, t1, - ,tp.1, let
W y(tg, t1, - ,tM-1) (3.16)
denote the number of £-tuples,

(‘}lr :’2’ T )‘}ﬂ)



with;rie Cpji for 1 <i <8 such that
comp( 1.1;\-!1,\-72, ,\-fn )=ty

" for 0 <h <M, where h is the standard binary representation of integer h. It
follows from the construction of C that

Wi(tg, t1, - ,tp.1) = Wyltg, t1, - Jtp.1)- 3.17)

The set,
{ WJ(tO, tla o 9tM_1) }

is the joint weight distribution of the binary component codes, Cy1, Cpo, -,
Chse-

If a maximum likelihood decoding algorithm is used, it is desirable for a
code to have a simple trellis structure [20]. A trellis diagram of C is a direct

product of those of binary component codes Cy,1, Cp9, -, Cg. The number of

states of a trellis diagram of a binary (n,k) code is upper-bounded by [29]

gmin{k,n-k} (318)

Some codes may have a trellis diagram with smaller number of states than the
bound. For instance, the (16,11) Reed-Muller code has a 4-section trellis
diagram with 8 states [20]. The number of states depends on the order of bit
"positions. It can be proved based on Appendix 1 in [20] that the number of
states is equal to (3.18) for any n-section trellis diagram of a shortened cyclic
code. The order of bit positions should be chosen in a clever way.



The code construction presented in this section is actually a

generalization of Sayegh's [26].

In this section, we construct some block codes for QPSK, 8-PSK and 16-

PSK modulations. These codes have good minimum squared Euclidean

distances. Some of these codes have simple trellis structure and hence can be

decoded by Viterbi decoding algorithm. The codes are constructed in such a

way that they are suitable for being used as inner codes of various cascaded |
coding schemes with outer codes over GF(28). For QPSK, the signal set is
shown in Figure 1. The construction of QPSK codes is based on the additive

group, A4 =1{0,1, 2, 3}, modulo-4 with B; ={0,1}and Bg = {0,2). It follows

from (3.6) that the distances between signal points are :

dl =2, d2 =4. 41)

For 8-PSK, the signal set is shown in Figure 2. The symbols for 8-PSK codes
are from the group, Ag=(0,1,2,3,4,5,6,7)}, modulo-8 addition. By = {0,1},

Bg ={0,2)}and Bg = {0, 4} are chosen to be the symbol sets for the component

codes. From (3.6), we find the distances between signal points are:

dy =0588, do9=2, dg=4. (4.2)

For 16-PSK, the signal set is shown in Figure 3. The 16-PSK codes have
“symbols from the group, Ajg=1{0,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15 ),

under modulo-16 addition. The four component codes have symbols from By =
{0,1},Bg=(0,2}and B3={0,4) and B4 = ( 0, 8 ) respectively. From (3.6) we

-10-—
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find that the distances between signal points are dy = 0.152, dg = 0.586,d3 = 2
and d4 = 4.

Let P, denote the (n,n-1) linear binary code which consists of all the
even weight vectors. The minimum Hamming distance of Pp is 2. Let P',j;

denote the dual code of P,,. Then PIJ; is the (n,1) code which consists of the all-

zero and all one vectors. The minimum Hamming distance of Pﬁ is n. Let
H2m_1 denote the even-weight subcode of the binary (2™-1,2™M-m-1)
Hamming code. Then the minimum distance of H2m-1 is 4. In the following,

we present a sequence of specific codes for QPSK, 8-PSK and 16-PSK.

Example 1: Let 2 = 2, M =22 = 4 and n = 5. We choose Cp; = Pg x Pg and Cpg =
(0,1}2 as the two binary component codes where Py x P3 is the cartesian
product of Py and P3. The binary component code Cpy is a (5, 3) code
with minimum Hamming distance 8; = 2. The second binary component code
Cpg is simply the (5, 5) code. Let

(2) A
CQ,l = Cbl +2Cb2.

2) .
Then Cé,)l is a QPSK code over the additive group A4 ={0, 1, 2, 3} with the

following parameters:

IcQy! =25, 4.3)
DICGy]= 4, @4
RICGy1= % 45)

-11 -



Y=10log;¢ 3 = 2.0dB) 4.6

This QPSK code maps a 8-bit message into a sequence of 5 symbols over Ay4.

Each of these 5 symbols is then mapped into a two-dimensional signal point in

the QPSK signal set shown in Figure 1. The QPSK code Cg )1 can be shown to

have a trellis diagram with two states.

Example 2: Let 8 =2, M =22 = 4 and n =15. Chose Cy,; = Hy5 and Cpg =P; 5 be
the binary component codes. Then the minimum Hamming distances of Cpq
and Cpg are §; =4 and 8¢9 =2 respectively. Let

4) A
CQ,3 = Cbl +ZCb2.

Then ng 33 is a QPSK code with the following parameters:

| Cg’;l =224, 4.7)
D[Cg%} =8, (4.8)
RICGA) =5 49
Y= 1010g101§= 5.0(dB). ‘ (4.10)

Since Hjg is obtained by truncating the (16,11) Reed-Muller code, the
’ component code Cy1 has a 4-section trellis diagram with 8 states[20]. The
component code Cy,g has a trellis of two states.

-12 -



The detail weight distribution of the QPSK code C(Q4, )3 can be evaluated

easily. For integers i, j and h such thati and j areeven,0 Sh<i<15and 0 <h
<j £15-i+h,

iY15- i), @11)

W((15—i—j+h, i-h, j~h, h)) = AH,i(h j~h

where Apg ; denotes the number of codewords in Hj 5 with weight i. For other
composition, t = (g, ty, to, t3),

W(t) = 0. (412)

In the next 5 examples, we present specific codes for 8-PSK modulation.

Example3: Let 2 =3,M =23 =8,n=8. Choose Cpj =Pg, Cpg =Pg and Cpg =

{0, 1)8 as the 3 binary component codes. The minimum Hamming distances of
Cp1, Cpg and Cy,3 are 8y =8, 89 = 2 and 83 =1 respectively. Let

C é?; 4 Cbl +2Cb2+4€b3.

2
Then Cg; is a 8-PSK code with symbols from Ag ={0,1,2,3,4,5,6, 7 1. Cé,%

has the following parameters:

| cgs =216 (4.13)
DICq 2 =4, “14)
RICg 31 =1, 415)

-13 -



vy = 10log; o 2 = 3(dB). (4.16)

Note that this code provides a 3 dB (asymptotic) coding gain over the uncoded
QPSK modulation mmmm&h_emm Cp and Cpo both have trellis

diagrams with two states. C( ) has an 8-section trellis diagram of 4 states

as shown in Figure 4 (see Appendix A for construction).

Hence it can be decoded with Viterbi decoding algorithm. The implementation
should be rather simple. This block 8-PSK code may be considered to be
equivalent to Ungerboeck's 4-state trellis code for 8-PSK modulation which has

squared minimum free Euclidean Distance df =4[8].

The complete weight distribution of the 8-PSK code Cézg can be evaluated

from the joint weight distribution of its binary component code. For integers i,

jandhsucht.hatiareeven,o.<.j$i.<.8and0$h$8—i,

W((h, 0, j, 0, 8-i-h, 0, i-j, 0)) = W((0, h, 0, j, 0, 8-i-h, 0, i~j))

8Y1Y8-i
For other composition t=( to t1, t2, t3, t4, ts, tg, U7 ),

W(t) =0. (4.18)

For its bandwidth efficiency, coding gain and simplicity in

-

implementation, Céz)z is extremely suitable for use as the inner code for a

cascaded coding scheme with the NASA standard (255,223) RS code over GF(2%)
as the outer code. Our preliminary results show that large coding gain can be

achieved by such a cascaded coding scheme.

~14 -



Example 4: Let$ =3,M=23=83ndn=23. ConsidertheS-PSKoodeCé?% with

binary component codes Cpy, C9 and Cyg where Cy,q is the (23,12) Golay code
and Cp9=Cp3=Pg93. The minimum Hamming distances of Cp;, Cpg and Cp3
are 81 =7, 89 = 83 = 2 respectively. Then

2
C 8.7 A Cp1+2Co+4Chg

has the following parameters:

I Copl =256, 4.19)
DICS A1 = 4, (4.20)
RICga1=2, “.21)
Y = 10log; % = 3.8(dB). (4.22)

Cp1 has a 3-section trellis diagram with 26 states[20]. The complete weight
(2)

enumerator of Cg 7 can be derived from the Hamming weight enumerator of

the (23,12) Golay code.

Example §: Let 2 =3, M =23 =8,n=15. Let Cp;, Cpg and Cyg be the shortened
(15,4) Reed-Mulier code, Py and {0, 1 }15, respectively. Then, §; =8, 89 = 2 and
53 =1. Let

@) A
08,4 = Cpp +2Cp0+4Cp3.
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Then Cg'z is an 8-PSK code with the following parameters:

| Cgil =233, (4.23)
DICG] =4, (4.24)
R[Cz(fi] = -11%)- , (4.25)
Y=10log;o 5= 3.4(dB) 4.26)

Cp1 has a 4-section trellis diagram with 8 states[20]. The complete weight

enumerator of ng‘)l can be derived from the Hamming weight enumerator of

the shortened (15,4) Reed-Muller code.

Example 6: Let 2 =3,M =23 =8 and n = 4m+3 where 4 <m < 7. Let Cp, Cp2
and Cpg be Pé, the shortened (n,n—6) code of Hg; and P, respectively. Then,

81=n,82=4and53=2. Let

4) a

C 8m = Ch1 +2Cp9+4Cypy3.

4)

Then (38( m 18 an 8-PSK code with the following parameters:

| Céﬁl = 28m, (4.27)

DICq 4] =8, (4.28)

4) 4m

R{CB,m] = 4m+3° (4.29)
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16m
Y=10log) g 773 - (4.30)

The complete weight distribution of CS( ‘21 is known. For integers i, j and

h such thati and j are even, 0 Sh <i<nand 0 <h <j < n—i+h,
W((n—i—j+h, 0, i-h, 0, 7~h, 0, h, 0 ))

= W(( 0, n—i—j+h, 0, i-h, 0, +h, 0, h))

= Ao (n)(78) (4.31)

where Ay , ; denotes the number of codewords in Cpg with weight i. For other

composition t=( to, t1, ta, tg, t4, ts, tg, t7),

W(t) = 0. (4.32)

Cp1 and Cpg have trellis-diagrams with two states. Since Cpg is derived by

shortening the (32,26) Reed-Muller code, it has a 4-section trellis diagram with
16 states [20].

Example 7: Let & = 3, M = 23 = 8 and n = 29. Let Cy; is the linear (29,5) code

which is obtained from the (32,8) Reed-Muller code of minimum weight 16 by

first deleting two redundant bits and then truncating one information bit. The
_minimum weight of Cjy is at least 14. Let Cy9 be the linear (25,23) code

obtained from Hgy by truncating two information bits, and Cp3 be Pag. Then
8224and53=2. Let

—-17 —



4) a
08,7 = Cp1 +2Cpa+4Cpg.

Then ng is an 8-PSK code with the following parameters:

| Cagl =25, 4.33)
DICg1=8, (4.34)
RICg =25 (4.35)
Y=10log, , 121—3- = 5.8(dB). (4.36)

Each of Cy,; and Cpo has a trellis diagram with 16 states.

Example 8: In this example, we construct a code for 16-PSK modulation. The
code has symbols from the group, A;g=1{0,1, 2, -, 15}, modulo-16. The four

binary component codes, Cy1, Cp9, C3 and Cpy, used in the construction are
sz, the second-order (32,16) Reed-Muller code, P39 and { 0,1 }32, respectively.

Let

Cl(%flo £ Cp1 +2Cp2+4Cp3+8Chy-

Then C1(26),10 is a 16-PSK code which has the following parameters:
(2)
1Cyg.10! =250, (4.38)
(2)
D(Cyq 1 ol=4 (4.39)

~18 -



RiCig101=1" (4.40)

v=1010g10-g-= 3.9(dB). (4.41)

Since the second-order (32,16) Reed-Muller code has a trellis diagram with 26

states [20], 01(26),10 has a trellis diagram with 28 states, and is invariant to

phase shifts of all muitiplies of n/8.

5. E 1 1D 1
In this section, we consider the encoding and decoding of the M-ary PSK
codes constructed in Secticn 3 with M = 22 Let C denote a M-ary PSK code.
Encoding
In encoding, a k-bit message u is divided into £ submessages, uj, uo,
.-+, ug such that the i-th submessage u; consists of kyp; bits and k = kyy + kpyo
+ -+ kpg. Forl <i<8, the i-th submessage ‘-11 is encoded by the binary

component code Cp; encoder. Let ':'i = (vj1, V32, = » Vjp) be the codeword for u1

Then the codeword for the entire message u is

v=(8q,89, ~,8,) =v] +2vg + - + 281y, | (5.1)
where
8j =V1j+ 2vgj+ - + 29'"1\79,5 , (5.2)

for1 <j<n. Note that 8 is a symbol in the additive group, A={(0, 1, -, 2%.1},
modulo-22. The symbels, 8y, 85, -, 8, are then modulated (mapped into

-19 -~



points in the 2-dimensional 2%-PSK signal set) and transmitted. The overall
encoder is shown in Figure 5.

Note that the correspondence between the message u and codeword v is
one-to-one. Let f denote the mapping of u onto v and f! denote the inverse
mapping of f. Then

v=f(u),
and (5.3)
u=f1@).
The mapping f depends on how to divide the message u into 2 submessages.
Decoding
In the following, we present a soft-decision decoding algorithm for the

M-ary PSK code C.
Forsin {0, 1, - ,2%1 ), let X(s) and Y(s) be defined as

X(8) = cos(21_2 rs), 5.4)
Y(s) = sin(21—21s). (5.5)
Forsand s'in {0, 1, -, 221 }, it follows from (3.3), (5.4) and (5.5) that

d(s,s") = X(s)}-X(s02 + (Y(s)-Y(s))2. (5.6)

For 1 €£j3<n, let (Xj,yj) be the normalized output of the coherent

"demodulator [30] for the j-th symbol of a received vector. The received vector is
then represented by the following 2n-tuple:



For the received vector z and a codeword v = (81, 89, -+, 8) in C, let | z,v12

be defined as follows:

n
lz,v12 =j§i (x;-X(8;))2 + (y-Y(e;)2. (5.7)

We assume that the channel is an AWGN channel. When symbol 8 € {0, 1,

-, 221 ) is transmitted, the normalized output (x, y) of a coherent

demodulator for 29’-ary PSK is distributed with joint probability density

function,

pxy) = _27372 o LE-XE)% + (y—Y(s))21/202’ 5.8)
where

o2=1 (5.9)

and p is the SNR per symbol [30,p.167]. We also assume that every codeword of

C is transmitted with the same probability.

Decoding rule: For a received vector z, choose a codeword v in C with
minimum |z,v!2. Then the decoded message u is given by u = £-1(v).

This decoding rule achieves maximum likelihood decoding for C cver an

AWGN channel.
If C has a simple trellis structure (the number of states is moderate), the

decoding of C can be implemented with Viterbi decoding algorithm.
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Assume that the channel is an AWGN channel and every codeword of C
is transmitted with the same probability. Let P, be the probability that a

decoded vector is error-free and P, be the probability that a decoded vector is
erroneous. Since C is linear over {0, 1, -, 2%2-1 } under addition modulo-22%

addition, we assume that the zero codeword 0 is transmitted without loss of

generality. For a received vector z, the decoded vector is error-free, if and only

if
12,9125 12,612, | 6.1)*

for every nonzero codeword v of C. It follows from (2.6), (3.3), (5.4), (5.5) and
(5.7) that the inequality of (6.1) can be rewritten into the following inequality:

n n
2, (X(sj-1Xxj-1)+¥(sp)yj < ¥, Ksj-124¥(sp)? = d5,0) .
=1 =1

(6.2

For an n-tuple v = ( sy, 89, -, 8,) over the group (O, 1, -, 221y,
let Q(v) be the set of vectors, ( X1, Y1, = » Xp» Yp)» Which satisfy the inequality
of (6.2). Define Q, as follows:

1 8

e

Then Q. is a convex set of 2n dimensional Euclidean space. It follows from

(5.8) that

v

* The probability that lz,v] 2. 12,01 2is zero, and such a case can be neglected.
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2,0.2 '
@) —( Z(x -1)“+yj W202
P dx¢dyy - dx,dy,,
¢ (zm2)“ J': I o T
(6.4)

where the integration is taken over Q.. Numerical computation of the integral

is not feasible unless n is small or Q, has a simple structure.

The following lemma holds on Q(v).

Lemma2: Letv = (s, 89, ,8,), V' = (8,83, - , 8;)and v" = ( §, 83, -,
8;,) be n-tuples over {0, 1, -, 22_1}. Then

QM N QW) < QH'),

if the following condition (i) or (ii) holds:

(i) For each j, one of the following conditions holds.
1.1) sj" = 8; and SJ' =0,
(i.2) =g and s;=0, ‘
(.3) g =2%1 and g =2%1 + 5; (mod 2%).
@) Gil) §=0orsg= 2%-1 for1 <j<n,
(11.2) if 5 = 0, then sJ =8, and
(ii.3) there is an s such that X(s) 2 0 and Y(s) 2 0, and if § = 221, then
either s; —sandsj 29"“1-sorsj =2‘°’—-sandsj'=29"‘1 + 8.

Proof: (i) Suppose that condition (i) holds. Then we have that for1 <j<n
X(3) -1 + X(s) -1 = X(g) -1,

Y(s)) + Y(8) = (&),
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(x(sj) - 1)2 + Y(sj)2 + (X(aj') - 1)2 + Y(%')z = (X(sj') _ 1)2 + Y(Sj")z,

Hence, inequalities (6.2) for v and v' imply inequality (6.2) for v''.
(ii) Suppose that condition (ii) holds. Then we have that for1 <j<n,

X(sj) -1 + X(sXX() - 1) = X(g) -
Y(sp + X(s) Y(s) = Y(g5),

X(s) - 12 + V()2 + X)X - 1)2 + (&)
= X(s) - D2 + Y(s)2.

Hence, inequalities (6.2) for v and v' imply inequality (6.2) for v'. ER

For a set T of n-tuples over (0, 1, -, 2% 1 }, a subset S of T is said to be

T-representative, if

Q) = - Q(V) (6.5)

veT

In the examples below, a relatively small subset S of nonzero codewords of C

can be chosen as a ( C — {0} }-representative set.
For nonzero codeword v of C, let Pe(x;) denote the probability that a

received vector z satisfies the following condition:
lzvl2< 12012,
that is,
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N |
2y, (X(8;-1Xx-1)+Y(s))y; 2 Iv! 2 | (6.6)
j=1

where 1v| denotes \Jd(n)(;r,ﬁ). Since the random variable,

n
2), Xigj-1)x;-1)+Y(s;)y; »
~

has a Gaussian distribution with zero mean and variance 4021 v| 2, we have

co X2

Pe(‘;)= J. 1 - e 8023;'2 dx e
. 2rnoivi
lvl2

lvl )
220

= *15 erfe (
-lz-erfc (—@ﬂ) 6.7)

where

o0

erfe(x) = 2 j e"tzdt
X

and p is the SNR per symbol [30].

- 25—



For a set Q of n-tuples over { 0, 1, .-, 2% 1 }, let Q denote the
complementary set of Q. Suppose that S is {C—(0))-representative. Then it
follows from (6.3) and (6.5) that

- _ .U - -
Hence we have the following upper bound on Pj.

Pe=1-P,< ¥ P,W. (6.8)

veS

Let A be the set of real numbers d such that there is a nonzero codeword
v in C with squared Euclidean distance d from the zero codeword 0. For de A
and a subset S of C, let Aj[S] be the number of codewords of C in S with squared
Euclidean distance d from the zero codeword. Then, it follows from (6.7) and
(6.8) that

Vdp .

Pic < 53 AglS] erfe( 52 ). 6.9)
de A

Ad[C—{é}] can be computed from the complete weight distribution of C. If we
can choose a small (C—(0)}-representative set S, A4(S] may be much smaller

than Ad[C—(ﬁ}] except for "dominant” d's close to D[C].

In the following, we evaluate the error performance of the specific codes

constructed in Section 4.

Example 1. Suppose C is the QPSK code Cg, )1 The following subset S of C can

be easily shown to be {C-—{0})-representative by using lemma 2.
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S8 (( 81, 89, - , 85 ) : one component is 2

and the other components are zero. }

U((s1,89,0,0,0):81 € (1,3),85¢ (1,3})

U {(0, 0, 83, 84, 85 ) : two components of { 83, 84, 85 ) arein (1,3 }

and the remaining one is zero. }.
it follows from (6.7) and (6.8) that

Py s 2 erfe(\p). (6.10)

Example 2: Let C be the QPSK code C((i1t 33 Note that Cpy (= Hy 5) is a shortened

code of the second-order (16,11) Reed-Muller code, denoted RM4’2 . A codeword

v of a linear code is said to be decomposable if there are two nonzero codeword

;71 and w-/z in the code such that v = ‘}1 + 52 and the Hamming weight of v is the

sum of those of i.rl and \72 . By using the canonical expressions of codewords of

the second-order Reed-Muller code [28], it can be shown that any codeword of
RM4’2 with weight 8 or 12 is decomposable. It follows from this fact ( Appendix

B) and Lemma 2 that the following subset S of C is { C—{ 0 } }-representative.
Let |v|y denote the Hamming weight of v.

S& (v=( sy, 89, ~,815): Ivig=2ands;e (0,2} for1 Si<15)

U{v=(sy,89,,85): Ivig=4,60r10,ands;e {0,13)
for 1 i <15 and the number of

occurrences of symbol 3 is even. }

—-927 -



u{v=(sy,89,,815): Ivlg=>5,7or11, and the number of

occurrences of symbol 2 is one,

and that of symbol 3 is odd. } .

It follows from (6.7) and (6.8) that

Pﬁ:’ < i’g‘é erfe(\2p) + 9100 erfe(\3p) + 40320 erfe(2p)
+ 43008 erfe(\/5p) + 215040 erf(\/6p) . (6.11)

Example 3: Let C be the 8-PSK code ng’; Suppose that, for each message (a;, |

ag, -, a1g), the bit a; is used as the input to the C},; encoder, the bits ag, as,
-, a5 are used as the input to the Cp9 encoder and the bits ag, a4, -, a1
are used as the input to the Cy g encoder. The following subset S is {C~{0})-

representative,
sS4 (¢ 81, 89, - , Sg ) : one component is 4 and the others are zero. }
v {(sy, 89, -, 8g ) : the number of nonzero components is 2,

and a nonzero component is 2 or 8. }

U {(8y,89,,88):8;islor 7 forl <i <8 and the number of

symbol 7 is even. }.

It follows from (6.7) and (6.8) that

P s 60erfo(\p) + 6derfe(2(2—2)p) . 6.12)
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On the other hand, the probability Pq ;. that there occurs at least one bit error

when 16 bits are transmitted by uncoded QPSK is given by [30],

PQic=1-[1-gerfe(\/ 5 ) J'6. 613)

In Table 1 and Figure 6, we show the upper bounds on Pgt) given by

(6.12) and PQ,ic given by (6.13) for various SNR per information bit, p/2. we

see that the code ngé achieves a 3dB real coding gain over the uncoded

QPSK without bandwidth expansion at 10"% block error rate. In Table 2 and

Figure 7, we show the upper bounds on the decoded bit error probability
for Example 3.

Let T be a subset of {0, 1, -, 2% 3 }. Forve C, define

Oce( T,v) & Y (the number of occurrences of symbol s in v).
seT

(6.14)
Example 4: Let C be the 8-PSK code Cg% Then the following subset S of C-{0)
is easily shown to be {C—{0}}-representative by using lemma 2.

sa { v=( $1, 89, , 893 ) ! I{r!H=2andsie {0,2,6}for1 <i1<23)

U (v=( 81, 89, -, 893 ) : Oce( {j },v) <1 for each je ( 2,3,4,5,6 )

and Occ({2,3,4,5,6),v)<2.}.

Example §: Let C be the 8-PSK code Cézi. The following subset S of C can be

easily shown to be {(C—{0}}-representative by using lemma 2.
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S&{ v=(s8y,89,~,815): IVig=1ands;e (0,4} forl Si<15)

Ul v=( 81, 89, = ,815) : Ivly=2ands € {0,2,6)forl sis15)

U { v=( $1, 89, =, 515' ): Oce( {j),v)s1 for each je { 2,3,4,5,6 )

and Oce({2,3,4,5,6),v) < 2. ).

(2)

Example 6: Let C be the 8-PSK code CS m The following subset S of C can be |

easily shown to be (C—(0})-representative by using lemma 2.

S2 (v=('s1,89, ,8,): Ivlg=2ands;e (0,4} for1 <i<n}

U{ v=(sq,89,~,8):8¢€ (1,3,5 7}forl <i<nand

Oce( {5,7),v )is even. }

U { v=( $1, 89, »8p ) I{'iH=4,60r10$ I\‘I!HSn,
s;je (0,2,6)forl <i <n and Occe( {6}, v) is even. )

U{v=( 81,89, ,85): Ivig=5Torll1<Ivlg<n,

8; € {0,2,4,6}for1<i<n,

Occ( {4}, v) =1 and Oce( {6}, v )is odd. }.

The error performance and coding gains of the codes given in the above

examples are now being computed and will be included in our next report.
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1. Condlusion

In this report, we have presented a class of bandwidth efficient block
codes for M-ary PSK modulation. A soft-decision decoding for this class of
codes is devised. Some specific codes with good squared minimum Euclidean
distance are constructed. The complete weight distributions of these codes are
determined. Their error probabilities are evaluated. Some specific codes have
simple trellis structures and hence can be decoded by Viterbi algorithm. Some
of these codes are suitable for use as the inner codes of cascaded coding scheme
with Reed-Solomon codes over GF(28) as outer codes. Our preliminary results
show that such cascaded coding schemes provide extremely high reliability
and large coding gains.

In our next report, we will present the coding gains of the codes

presented in this report over the uncoded QPSK modulation,
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Appendix A

Trellis Diagram for the 8-PSK Code Cg;

The 8-PSK code Cg; consists of three binary component codes Cp1, Cpo
and Cj3 which are Pﬁ, Pgand {0,1 )8 respectively. Let u be a 16-bit message to
be encoded. Divide u into three submessages fxl, 1_12 and f13 where fxl consists

of only one bit, ﬁz consists of seven bits and ﬁ3 consists of eight bits. Then {11,

1-12 and 1'13 are encoded based on Cyy;, Cpyg and Cpg respectively. Let

a =(ay,ag, ag, ay, a5, ag, a7, ag)
b= (by, by, b, by, bs, bg, by, bg)
¢ =(cy, cg, €3, ¢4, 5, Cg, €7, €8 )

be their corresponding binary codewords. Note that a is either the all-zero
vector or the all-one vector. The codeword b has even weight.

For1 <2 < 8, the input to the signal selector of the overall encoder-
modulator at the 2-th time unit is the triplet ( ag, by, cg ). Ifag =0, then (by,
cg ) selects a signal point from the QPSK signal set shown in Figure 2b. If ag
=1, then (bg, cg ) selects a point from the QPSK signal set shown in Figure 2c.
Hence the system switches between two QPSK signal sets. To construct the
trellis diagram for Cg?z, we need to define the states of the overall encoder-
modulator. Let ( by, by, -, by ) denote the 2-bit prefix of codeword b. Let W(

“by, b, -, by ) denote the Hamming weight of ( by, bg, -+, by ). At the 2-th
time unit, the state of the encoder-modulator depends on the bit ap and the
number.W( by, bg, -, by ). Define the following states:
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(1) Ag represents the states that ag = 0 and W( by, bg, -, by ) is even;

(2) A, represents the states that ag = 0 and W(b, bg, -, bg ) is odd;

(3) Bg represents the states that ag =1 and W(by, bg, -, bg ) is even; and
(4) B, represents the states that ag =1 and W(by, bg, -, by ) is odd.

Assume that the encoder-modulator starts from the state A, at the time 2 = 0.
Then the trellis diagram for Cg; can be constructed easily as shown in Figure
4. There are two parallel branches (or transitions) between the transition of
two states; they correspond to cg = 0 and cg =1 respectively.

The encoding of message u is equivalent to tracing a path in the trellis
diagram. The codeword corresponding to u is a sequence of QPSK signal
points either from the set shown in Figure 2b or from the set shown in Figure

2c.
EN
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Appendix B

Consider the second-order (16,11) Reed-Muller code RMy 9. We use a
boolean function b(v) for expressing a codeword v in RMy 5.
By using an affine transformation, a codeword v in RMy o with weight 8

or 12 can be represented as one of the following forms [28,p.438]:
1) If Ivl H =8, then b(v) = X1 Xg+Xg OT b(v) = x3.
2) If Ivigg =12, then b(v) = x;x9+1.

Let y be x1, xg or x; + X9 . Then the degree of yb(¥) is at most 2. Let v; and vg =

denote the codewords represented by ybh(v) and (y+1)b(v), respectively. Then, v=
Vi + Vg, V] 20, vg =0, and Ivig = lvy ly + lvgly . Thatis, v is decomposable.

Let u be a codeword of Cp2 (=P15) such that
lv+2ulg = Ivig.

Let lul H,y=a denote the number of nonzero components of u in the bit-
positions for which y=a. If lul H,x, =0 and lul H,x,=0 2Te odd, then lul H,x; =1
and IuIH,x2=1 are odd. Then 'u'H,x1+x2=0 and '“'H,x1+x2=1 are even.
Therefore we can choose one of xq, X9 and x; + X9 as y in such a way that
ful H,y=0 and lu! H,y=1 &re even.
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Figure1 QPSK signal set and squared Euclidean
distances between signal points.



(a) 8-PSK signal set and squared Euclidean distances

between signal points
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Figure 3 16-PSK signal set and squared Euclidean
distances between signal points.
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Upper bounds on the probability of incorrect decoding
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Figure 6 Upper bounds on the probability of incorrect decoding for a block

with 16 information bits for Example 3 and uncoded QPSK
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Table 1. Upper bounds on the probability of incorrect
decoding for a block with 16 information bits

for Example 3 and uncoded QPSK
SNR per SNR per Upper bounds
symbol information |on Pic PQ ic
(dB) |bit (dB) |for Example 3
7.0 3.98 1.34E-01 1.85E-01
7.5 448 6.78Ek-02 1.34EK-01
8.0 4.991 3.10E-02 9.23E-02
8.5 5.45 1.43E-02 6.33E-02
9.0 5.97 5.31E-03 3.88E-02
9.5 6.49{ 1.79E-03 2.26E-02
10.0 6.95] 5.48E-04 1.24E-02
10.5 7.49] 1.53E-04 6.52K-03
11.0} 7.96 3.84E-05 3.24E-03
11.5 8.49 7.15E-06 1.39E-03
12.0 8.98 1.22E-06 5.93E-04




Table 2 Upper bounds on the decoded bit
error probability for Example 3

SNR per SNR per Upper bounds on
symbol information [the decoded bit
(dB) jbit (dB) lerror probability
7.0} 3.98 4 31E-02
7.5 448 1.99E-02
8.0 4.99| 8.42E-03
8.5 5.45 3.66E-03
9.0 597 1.29E-03
9.5 6.49 414E-04
10.0} 6.99{ 1.21E-04
105 7.49] 3.21E-05
11.0} 7.96 7.78E-06
11.5 8.49 - 1.39E-06
12.0 8.98 2.52E-07




